Boundary behavior of harmonic functions on hermitian hyperbolic space
نویسندگان
چکیده
منابع مشابه
Boundary Behaviour of Harmonic Functions on Hyperbolic Manifolds
Let M be a complete simply connected manifold which is in addition Gromov hyperbolic, coercive and roughly starlike. For a given harmonic function on M , a local Fatou Theorem and a pointwise criteria of nontangential convergence coming from the density of energy are shown: at almost all points of the boundary, the harmonic function converges non-tangentially if and only if the supremum of the ...
متن کاملHarmonic functions on hyperbolic graphs
We consider admissible random walks on hyperbolic graphs. For a given harmonic function on such a graph, we prove that asymptotic properties of non-tangential boundedness and non-tangential convergence are almost everywhere equivalent. The proof is inspired by the works of F. Mouton in the cases of Riemannian manifolds of pinched negative curvature and infinite trees. It involves geometric and ...
متن کاملUniversal Approximator Property of the Space of Hyperbolic Tangent Functions
In this paper, first the space of hyperbolic tangent functions is introduced and then the universal approximator property of this space is proved. In fact, by using this space, any nonlinear continuous function can be uniformly approximated with any degree of accuracy. Also, as an application, this space of functions is utilized to design feedback control for a nonlinear dynamical system.
متن کاملHarmonic Functions, Entropy, and a Characterization of the Hyperbolic Space
Let (Mn; g) be a compact Riemannian manifold with Ric (n 1). It is well known that the bottom of spectrum 0 of its unverversal covering satis es 0 (n 1) =4. We prove that equality holds i¤ M is hyperbolic. This follows from a sharp estimate for the Kaimanovich entropy. 1. Introduction Complete Riemannian manifolds with nonnegative Ricci curvature have been intensively studied by many people and...
متن کاملBoundary Behavior of Harmonic Functions for Truncated Stable Processes
For any α ∈ (0, 2), a truncated symmetric α-stable process in R is a symmetric Lévy process in R with no diffusion part and with a Lévy density given by c|x| 1{|x|<1} for some constant c. In [24] we have studied the potential theory of truncated symmetric stable processes. Among other things, we proved that the boundary Harnack principle is valid for the positive harmonic functions of this proc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1971
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1971-12744-1